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We consider the motion of two rings of liquids with different viscosities and densities 
lying between concentric cylinders that rotate with the same angular velocity 52. 
Gravity is neglected and interfacial tension is included. We show that rigid motions 
are globally stable and that the shape of the interface which separates the two fluids 
is determined by a minimizing problem for a potential 9 defined aa the negative of 
the sum of the kinetic energies of two rigid motions plus the surface energy of the 
interface. We show that the stable interface between fluids has a constant radius when 
heavy fluid is outside and J = - #[p] Qz/T is larger than four, where d is the mean 
radius, [p]  < 0 the density difference and T the surface tension. When J is negative 
the heavy fluid is inside and the interface must be corrugated. The potential of flows 
with heavy fluid outside is  smaller, thus relatively more stable, than when light fluid 
is outside, whenever J is large or for any J when the volume ratio m of heavy to light 
fluid is greater than one. These results give partial explanation of the stability and 
sha.pe of rollers of viscous oils rotating in water and the corrugation of the free surface 
of films coating rotating cylinders. 

1. Introduction 
We consider the flow of two immiscible liquids with different viscosities and 

densities lying between concentric cylinders, both of which rotate with the same 
angular velocity 52. We neglect gravity and include interfacial tension. We study the 
stability of steady rigid-body rotation in which the two fluids are arranged in two 
rings with a given volume ratio. We show that rigid-body rotation is globally stable, 
and the interface shape between the two fluids is determined by a minimizing 
problem for a potential defined as the negative of the sum of the kinetic energies of 
two rigid motions plus the surface energy of the interface. We show that the interface 
between the two fluids has a constant radius when the heavy fluid is outside and 
J = -d3[p] Q2/T is larger than four. This implies that centrifuged configurations lie 
outside an interface of constant radius. We note that the stable rollers of oil in water 
observed by Joseph, Nguyen t Beavers (1984) have heavy fluid (water) outside an 
interface of essentially constant radius. The rollers are maintained in nearly rigid 
motion by the high viscosity; there is no outer cylinder, and the motion of the water 
is not rigid. We show that the interface on rigid motions with heavy fluid inside must 
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be corrugated. Photographs of corrugated interfaces of liquid films coating cylinders 
rotating in air can be found in the papers of Yih (1960) and Moffatt (1977). Yih gave 
a linear stability analysis for films coating cylinders rotating in air, and his results 
are consistent with ours. 

The potential of flows with heavy fluid outside is smaller, thus relatively more 
stable, than when light fluid is outside, when J is large or for any J when the volume 
ratio m of heavy to light fluid is greater than one. This is consistent with the idea 
that configurations with heavier fluid outside should be more stable because of the 
centrifugal force and that, if the inner fluid is heavier, the rigid motion should be less 
stable no matter what the viscosities. The stability of flows in which viscosity 
differences are important depend strongly on the viscosity ratio. Rigid-body rotation 
involves no shear. As a result, the mechanism that we call lubrication stabilization 
(Renardy & Joseph 1985), in which thin layers of the less viscous fluid occupy regions 
of high shear, is absent. 

2. Equations of motion and interface conditions 
Consider the flow of two immiscible liquids contained between two infinite 

concentric cylinders. The perturbed regions occupied by liquid 1 and 2 are denoted 
respectively as 

Vl(t) = { r ,O ,x Ia  G r G R(x,O,t) ,  -a < x < oc), 0 G 8 G 2x1, 

Vz(t) = { r , 8 , ~ 1 R ( ~ , e , t )  G r < b, -a < x < a, 0 G 0 G 2 ~ ) .  

The stress is given by 
T = -pl+S, S = 2~D[u].  

The equations of motion hold in each region : 

divu, = 0, 1 = 1,2, (2.2) 

(2.3) 
d 

p1 dt u, = - V@, + div S,, 

where u, = e,u, +e,v, +ex  wl, @, = p, +pl  gr sine, D[u] = ?j(Vu+VuT), p1 and pz i re  
the densities and ,ul and ,uz are the viscosities. In all that follows g = 0. The cylinders 
at r = a and r = b rotate with some constant angular frequency SZ. At the interface 
Z given by 

F(x, r ,  8,  t )  = r -  R(z ,  8,  t )  = 0, (2.4) 

we have 
aR v aR aR 

u = - + - - + w - - .  
at R ae ax 

We also require that the jumps across Z, 

in the velocity, the shear stress and the difference between the jump in the normal 
stress and the surface tension force all vanish. 

We are going to study spatially periodic solutions that are (2n/ol)-periodic in x and, 
of course, 2n-periodic in 8. The volume of each component fluid is prescribed by 
specifying a mean radius 

d2 = Ez, (2.6) 
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where 

Our convention is the fluid with subscript 1 is on the inside. The fluid on the inside 
can be heavy or light. We are interested in two cases: 

( A )  the heavy fluid inside, a < r < RA(8,  x, t ) ,  

Qp] > 0, d i  = R2 A ,  . (2.8) 

[p] < 0, d: = EL. (2.9) 

(B) the heavy fluid is outside, RB(8,  z, t )  < r < b,  

The volume ratio of heavy to light fluid is 

(2.10) 

The volume of light fluid and the volume of heavy fluid is fixed, independent of 
whether it is inside or outside when mA = mB. Then 

d i = k ,  m2 +a2 d & = l + m .  b2 + m i  
(2.11) 

The jump equations at  r = R are 

Qu] = 0, -(lJ$]+2HT)n+QS].n = 0 ,  (2.12) 

where 

RR,,( 1 i- R i )  + RR,,(R2 + RQ) - R2(1 i- R i )  - 2Rg- 2RR, R ,  R,, 2 H =  . (2.13) 
(R2 + RZ+ R2R$ 

2H is the sum of the principal curvatures, T is the surface tension, and n = WF/ lVFl 
and WF = e,-e,R,/R-e,R,. 

3. Rigid rotation of two fluids 

The velocity U, = e,Qr (3.1) 

and the pressure p ,  = +pQ2r2 + D, (3.2) 

where the constants ( p ,  D) are ( p l ,  Dl) in “v; and (p2, D,) in V2, is a solution of (2.2) 
and (2 .3)  with S identically zero. We suppose that R(8, x, t ) ,  periodic in x and 8, is 
prescribed and arbitrary. At r = R we have 

Buon = 0,  b0n = [pa :Q~R* + [on. (3 .3)  

b,] +2HT = 0,  (3.4) 

We cannot satisfy the differential equation 

expressing the jump condition for the normal component of the stress, for an arbitrary 
given surface R(8, z, t ) .  We call (3.1)-(3.3) an ‘extended’ rigid motion, and we prove 
that these motions are globally stable with the shape of the interface, and possibly 
the placement of heavy and light liquid determined by a new minimum principle of 
classical type. 
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4. Perturbation equations 
Let u, p be the velocity and pressure in the deformed domain, and let 

u = u , + i ,  p =Po+#,  

where u, = e, V(r ) ,  and po(r) is the associated pressure. The functions &, # and s are 
perturbations. In  designating components 

& = (u, v, w) 

we suppress the caret overbar. All these quantities are defined in Tl(t) and T2(t). For 
the moment we leave open the possibility that [a .f. 0 (for rigid motion [VJ = 0). 
The equations governing and # are 

= -V@+V*S,  (4.1) 

(4.2) 

1 
v*n = 0. 

The boundary conditions are 

ii,(r = a )  = &,(r = b )  = 0. 

The interface conditions on r = R(x, 8, t )  are 

(4.3a, b) 

aR v+VaR aR 
u=-+--+w-, 

at R ae ax (4.5) 

5. Energy equations for nonlinear disturbances 
We introduce the following notation : 

r r 

where cLZ = Rd8dx 1+S+R:li = RdBdx)VF(,  [ R2 

and we are assuming that the disturbance flow is (2x/a)-periodic in x. 

add, and use Reynolds’ transport theorem to show that 
To form the energy equation, we multiply (4.1) by u,  integrate over Vl and T2, 

and 

( p  ~)+(pti.D[~,]~&>+(2pD[&]:D[li]) = ( [ -@u*n+&.S*n])z .  (5.1) 
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For flow in circles with u, = e,rQ we have 

which vanishes on rigid motions. Moreover, since D = U-U, is continuous across C, 
we have 

( [a -  ( -$n + S n) ]  )= = ( (u - u0) [I: -$n + So n])e  = < (u - u,) n ( b o l  + 2fW,, 

(5.2) 

where the last equality follows from (4.6). We next observe, following idem of 
E. Dussan V., (see Joseph 1976, equation (96.11)) that 

d 
dt != (2HTu- r~ )~  = -- T U .  (5.3) 

Since T is constant, we have 
d 

(2HTu*n), = -Tdt([R2+R;+RBR;jD, 

where ( 1 is defined in (2.7). 
Moreover, using (2.5), we find that 

Hence <boa u*n>= = (ban R ~ W D .  
Since b,] = [p] #PRB + ED] is a function of R alone, there is a scalar function 

@(R) = [I:p]p(~2-d*)z (5.4) 

(5.5) 
d 

such that (boll R WatD = (@(RID ; 

in deriving (5.4)-(5.5), we used (2.6) to set 

Finally, we show that, for rigid motions where uo*n = ORe/ (Vq , we have 

<u;n(np,] +2HT)), = L2(RRe(bo] +2HT)D = 0. (5.6) 

In  deriving the first equality, we use n = VF/ I V l  ; then we note that, since bo] is 
a function of R alone, there is a 2x-periodic m(R) such that 

which vanishes on integration. We next use the expression (2.13) to write 

Since R(8, x, t )  is periodic in z and 8, the last integral in (5.6) vanishes. 

6 B L M  153 
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Collecting all these results, we find that 

d(B+.M) 
dt 

= -9, (5.7) 
where 

(5.8) 
B = (+pla1’), 9 = (2pD[ti]: D[ii]) ,  

.M = T([R2  + R$ + R2Ri]!D - Q[p] Q2 ( [R2  - d2I2D. 

The function A [ R ]  is the variable part of a ‘potential energy’ B [ R ]  for rigid motions. 
It is easily verified that 

.X, = i[-(a4D + (R4D] p1 Q2, x2 = i[(b4D - (R4D] pa Q2, 

are the kinetic energies of rigid motions in regions Vl and V, respectively. The 
associated potential of these rigid motions is the negative of the sum of the kinetic 
energies plus the surface energy 

9=-( .q+%)+T a 
Jz 

= C,+T([R2(1 +Ri)+R$]iD-Q[p] (R4DQ2 

= C,+& = c,+.M, (5.9) 

where C, and C, are different constants. We may write (5.7) as 

= -9. d(b+9)  
dt 

(5.10) 

Equations (5.7) and (5.10) were derived by D. D. Joseph. 
In  $6 we shall show that rigid motions are globally stable, as is the case with one 

fluid, but that the stable configurations of the rigid motions minimize 9’ subject to 
the volume constraint (2.6).  

It is useful to write the potential in a dimensionless form in which R = d + S and 
(S ,x ,  l/a) are made dimensionless with d and A = S/d. Then, to within constants, we 
may define a dimensionless potential 

B = - (ID+([(  1 + A ) ,  ( 1  + A 3 + d 3 : ) + i J ( [ 2 4  +d212D, (5.11) 

where 

The constraint (2.6) implies that 

(2A+d2D = 0 .  (5.12) 

This shows that the average deviation A = - 1 + R / d  from zero must be negative if 
the volume of the two fluids is preserved. 

It is necessary to remark that the representation r = R(8, x, t )  of the free surface 
is not completely general and it loses its utility when the magnitude Id1 of the 
deviation from the cylinder is equal to 

d = m i n  i - - - - i  [ z 1 (5.13) 

If 
smooth free surface will not be possible. 

2 2, then the interface will touch one or the other of the cylinders, and a 

The linearized form of (5.11 ) for d near to zero is 

B = ~ [ J - 1 1 ] d 2 + d i + A ~ D .  (5.14) 
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6. Stability of rigid motion 
The following results concern solutions of the equations that are smooth for all time. 

THEOREM 1. Rigid motions are stable in the sense thut periodic disturbance of rigid 
motion must decay in the mean. 

We first note that 9 > 0 on all non-zero disturbances of rigid motion. We are 
considering the stability of flows with heavy fluid outside, - [p] = p2-p, > 0, or 
inside, [pa > 0. These two situations, called (A) and (B) in $2, are distinct in that 
they cannot be connected by time-dependent motions with smooth interfaces. We 
choose u to be a disturbance of one or the other of these two possibilities. Then the 
positivity of 9 implies the decay of d + 9. In  fact, we could show that there is h > 0 
depending on the viscosities and the densities, such that 9 2 hb, where h depends 
on Y,, Y,, p,, p,, pl and p,. Integrating (5.10) from t = 0 to t ,  we find that 

d(t)+P(t)  = d(O)+S(O)-] 9(7)d7 
t 

0 

rt 

rt 

it  follows that A J -  8(7)d7 < d(O)+S(O)-b(t)-S(t). (6.2) 
0 

Since S is bounded from below we conclude that 

d(t) and 9 ( t )  are integrable. (6.3) 

Moreover, assuming that 8 goes to 0 as t ++ 00, B admits a finite limit as t goes to 
+a. 

Let us consider the limit configuration (&(coo), S(o0)); since d(00) = 0, this is a rigid 
motion. To show that B(a0) is a minimum of the functional 9 as R varies, we consider 
any rigid motion (b(0) = 0, S(0))  and assume that this rigid motion goes to the rigid 
motion (b(00) = O,S(m)) as t goes to + 00. If S ( 0 )  =t= S(co), then the interface 
between the two liquids must have moved from the configuration at t = 0 to the one 
a t  t = 00, and in this motion 9 ( t )  > 0 on an interval with non-zero measure. Then, 
from (5.10), 

B(ao)-S(O) = -] 9(t)dt < 0, (6.4) 
0 

so that P(0O) < S(0). (6.5) 

Thus B decreases in every change of configuration between rigid motions. Since B 
is a bounded-from-below functional of R, S must decrease to 

S(o0) = limB(t) = minB(R), (6.6) 
t+m R 

where E2 = da and R is periodic and continuously differentiable in z and 8. 

family R(E.). We assume that R(0) = 8, where 
We may describe the set of such periodic functions R with R2 = d2 as a one-parameter 

9(8) = rninS(R) = minS(R(c)). 
R € 
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w dR 
- [R(B)],,, = - ( R  - (0) (2RT+f[p]  Q2R2)D = 0, 
ds ds 

where 2 B  denotes the curvature (2.13) evaluated on the minimizer R = R.  Since 
R2(s) = d2, we have 

( R  - (0)D = 0, 

so that (RdR/ds) (0) is orthogonal to constants. It follows now from (6.8) and (6.9) 
that 

2RT ++[PI) Q2R2 = C = 2WT ++[PI) Q2d2, (6.10) 

where fi is the mean value of R. 
Equation (6.10) may be recognized as the differential equation arising from the 

normal-stress condition (2.12) on rigid motions. 
It now follows that extended rigid motions, which are globally stable, are actually 

hydrodynamically admissible, with a balanced normal-stress equation, when the 
interface R = a is a minimizer of (6.6). The stable rigid motions satisfy (2.5) in the 

(6.9) 
dR 
ds 

form aR aR 
0 = -+Q -, 

at ae 
where is time-independent in a rotating coordinate system. 

THEOREM 2. The stable confiurations are those rigid motions that minimize 9' among 

Consider first case (A) in which the heavy fluid is outside, J > 0. If J > 1, then 
given by (5.14) is a minimum when d = 0. 

THEOREM 3. The cylindrical interface with constant radius R = d i s  stable against 
small disturbances if and only 

It is of interest to ask when R = d is a global minimum of 9 among all interfaces 
of the form r = R(B,z) compatible with the volume constraint. This question is 
answered by the following theorem of M. Renardy. 

THEOREM 4. The concentric interface R = d is  a global minimum of B among all 
interfaces r = R(8,z) satisfying (2.6) i f  and only i f  J 2 4[1 +a/d]-2,  0 < a < d.  

First we show that the criterion of theorem 4 is sufficient for stability. 
Certainly we have Q 2 0 = (TR+&?2(p2--p,) R4D, and it is sufficient to show that 
R = d minimizes 0. We set R2 = d2( 1 + y ) ,  hence y is subject to the constraints 
- 1 +a2/d2 < y < - 1 + b2/d2 and ( y )  = 0. We then have 

C'(x, 0)  functions R ( x ,  0)  satisfying the volume constraint (2.6). 

J 2 1 .  

Q = Td(( 1 + y); +$J( 1 +?)'I 
= Td(( 1 + y);+iJ( 1 +y)2-y[++iqD. (6.11) 

We define fW = (1  + y ) ! + ~ J J ( 1 + y ) 2 - y [ ~ + ; t J l .  (6.12) 

The constant multiplying y has been chosen such that f'(0) = 0. If J 2 4[1 +a/&]-2, 
then f has its minimum at y = 0, for y in the range 

[ - 1 + a2/d2, - 1 + b2/d2].  

The criterion is also necessary for a global minimum. We can choose R such that 
R, = 0, and, by choosing a small (long waves) we can make R, as small as we like. 



Stability of rigid motions and rollers in bicomponent flows 159 

It follows that it is also necessary that R = d minimizes $. If J < 4[1 + ~ / d ] - ~ ,  then 
fl- 1 +a2/d2]  < f(O), and the graph of f  is sketched as figure 1. If we draw the 
tangent from the point (- 1 +a2/d2, f( - 1 +a2/#))  as indicated, it will touch 
the graph o f f  at a point (a", f(4) to the right of y = 0. Let 2 be any number 
such that 0 < a" d mex (&, - 1 +a2/d2). The straight line connecting the points 
( -  1 +a2/d2, f( - 1 +a2/#))  and (a, f@)) intersects the line y = 0 at a value below f(0). 
Let us now consider a perturbation y(z) with the following properties : 

a2 
(i) y takes only the values a  ̂ and - 1 +-, d2 
(ii) ( y )  = 0. 

Let p and q = 1 = p be the probabilities with which y takes the values â  and 
- 1 +a2/d2 respectively. Then 

Let y ( y )  be a point on the tangent line of figure 1. After eliminating p from the last 
two equations, we find that 

= Y(0) < f(0). 

Hence y = 0 does not minimize 0. 
Turning next to case (B) in which the heavy fluid is inside, J < 0, we find that f(y) 

is concave. Hence 0 will have minimizers only at boundary values - 1 +a2/d2 and 
- 1 + b2/d2.  In an infinite cylinder there will therefore be no minimizers of P of the 
form r = R(8,z) .  In  a finite cylinder, we cannot make R, arbitrarily small without 
also making y small, and there may be stable motions with heavy fluid inside, which 
have a corrugated free surface, as in the experiments of Yih (1960) and Moffatt 
(1977). It would be of interest to determine these corrugated shapes as a solution 
for the minimum problem of &. If J is large, we expect the amplitude of the 
corrugated surface to be also large and eventually violate the constraints 

The results of this paper have some relevance for the problem of centrifuging. 
Intuitively one expects that the heavy fluid will be outside if the rate D of rotation 
is large, even if the heavy fluid were initially on the inner cylinder. The transport 
of fluid from the inner to the outer cylinder is a topologically complex process which 
cannot be handled in the frame of our smooth parametrization of the interface. The 
transpot of fluid from the inner to the outer surface is also a physically complex 
process involving the rupture of adhesion at both walls and possibly internal 
fracturing and healing of the liquids themselves. These physical processes are not well 
understood, and they do not appear in our equations. Nevertheless, it is not 
unreasonable to seek stable configurations among those that minimize 9 with respect 
also to the position of heavy and light fluid. 

We can compare the potentials gA and gB for flow with heavy fluid inside, [p]  > 0, 
and heavy fluid outside, [p] < 0, under the condition that the volume m, defined 

- 1 +a2/d2 < y < - 1 + b2/d2.  
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in $2, is fixed. The total kinetic energy XA when the heavy fluid with density p1 is 
inside is given by 

X A  = .X,+X2 =91S22(R4A-~4)+Q~2S22(b4-R4AD, 

where ( R i )  = (d;) .  When the heavy fluid with density p1 is outside, 

Xs = + X2 = +pl Q2(b4 - RiD + ip2 Q2(RL - a4), 

where (RLD = ad&). Using (2 .10) ,  with mA = ms = m, we find that 

The potentials are PA = - XA + T IZAI , Ps = - xB + T p,l, 

where IZAl = s  dZ 
Z A  

is the area of Z A .  The difference in the potentials is 

sP,-ps = - X A + X B + T (  IZAl-IZ~l) 

= ; [p] Q2(b4 + a4 - R4 A - R4 B D + ~ ( ~ ~ A ~ - ~ ~ B ~ ) ~  
Here [p] = pI-p2 > 0. If PA > PB then (B) with heavy fluid outside is more stable. 
Since (R2)  = (d2) ,  we have 

( [R2-d2I2)  = (R4D- ( d 4 ) .  

The potential difference may be written as 

P A - ~ B  = fKp] a2[(b4 +a4--dl -diD - ( [ R i  -d;l2 + [Ri -dLI2)]  + T( IZAI - 1Zs1 ). 

Now, using (2 .11) ,  we eliminate d i  and d i :  
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Consider now the case of uncorrugated interfaces with R, = d,, RB = dB, Z, = 2ndA, 
C B  = 27cdB. We find that 

where d ,  and dB are given in terms of m by (2 .11) .  If the volume ratio m of heavy 
( p l )  to light (pa)  fluid is greater than one, then d A  > dB. Hence PA > gB when m > 1 .  
If there is only a small amount of heavy fluid, m < 1 and dB < dA, then 9, > gB 
if [ p ]  Q2/T is large. In all these cases the configuration with heavy fluid outside is 
more stable. If [p] Q2/T is small enough, then PA < PB, and the configuration with 
heavy fluid inside is more stable. However, our earlier analysis showed that, when 
the heavy fluid is inside, the RB(8,x) that minimizes 9 is not everywhere equal to  d,. 

7. Stability of rollers 
Rollers are viscous fluid bodies that rotate as rigid wheels in fluids of smaller 

viscosity. These rollers have been observed (Joseph et al. 1984) in bicomponent flows 
of immiscible liquids in several different flow configurations: on a cylinder rotating 
in a box, between the four cylinders of Taylor's mill for studying straining flows, and 
separating dynamically driven Taylor vortices between rotating cylinders. 

The most interesting feature of the dynamics leading to the formation of rollers 
is the fracturing of the viscous liquid at some critical level of the stress. In this process 
the roller breaks away from the sidewall and relieves the high stress associated with 
no slip at  the sidewall. So in the final, stable dynamics, rollers are lubricated by water 
and air on all sides. The rollers rotate nearly as rigid bodies because they are so 
viscous. The stability of rollers, as our analysis suggests, depends on the fact that 
the density stratification is such as to prevent the centrifuging of the roller. The 
viscosity ratio is probably not an important factor in the dynamics of stable rollers. 

The water that surrounds the rollers in experiments is at  rest near the tank wall 
and cannot rotate rigidly. Therefore rollers are not a special case of rigid motions 
studied in this paper. However, the density stratification, with water outside, does 
contribute to the stability of rollers, with a stabilizing term [ p P ]  s2 at the interface, 
where V is the common velocity of fluid particles on either side of the interface and 
6 is the surface deflection; here assumed small. 

Rollers are unstable to non-axisymmetric disturbances when the angular velocity 
is high enough. This instability is associated with viscous shearing, which becomes 
important at higher speeds and with a possible unstable distribution of angular 
momentum. 

The low-speed rollers are robustly stable. In  our analysis we did not consider 
gravity, but gravity does enter into the dynamics of the stable rollers reported in 
Joseph et al. (1984) and here. In  experiments in which the top of the roller rotates 
in air the roller would centrifuge out into the air were it not for gravity, which on 
the small top portion of the roller exposed to air is nearly radial. A similar, but smaller, 
effect due to gravity occurs at the bottom of the roller, which is pushed up by gravity 
because the lighter oil is buoyant in water. Gravity tends to flatten rollers into 
right-circular cylinders. To a degree the diameter of stable rollers can be controlled 
by gravity, with a tendency for the roller to poke its head into the air. We are able 
to change the diameter of the rollers by changing the water level in the box. This 
effect of gravity is exhibited in figures 2 (a-c). Sketches of the side view of these plates 
are shown in figures 2 (d-f ). 
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FIGURE 2 (a), ( b )  and (c). For caption see facing page. 
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FIGURE 2. Roller of silicone oil ( p  = 0.95 g/cm8, p = 95000 cP) in water a t  different water levels. 
The rod is made of Plexiglas, 2 in. in diameter, and rotates a t  10 r.p.m. (a) The roller is very nearly 
in a solid-body rotation with small shearing by water at the roller rim. Part of the roller is in water 
and the other in air. The roller is very stable, held together by hydrostatic pressure in water and 
gravity in air. (b) Water is added to the box. The roller becomes larger by flattening out but remains 
round and stable. (c) More water is added. The roller becomes even larger. The roller is now 
completely submerged in water and is slightly out of round due to buoyancy. (d) Sketch of the side 
view and front view of (a). (e) Sketch of the side view and front view of (a). Water is added to the 
box. The diameter of the roller becomes larger. The shape of the roller changes, conserving volume. 
cf)  Sketch corresponding to (c). 

The principal effect of gravity may be eliminated by submerging the roller entirely 
in water, as in figures 3 (a, b). When the flattening effects of gravity are absent, the 
shape of the interface on stable rollers is strongly infiuenced by interfacial tension, 
with bounding surfaces in nearly circular arcs, as in figure 3(b) .  The pressure 
distribution in the water is not a strong barrier to centrifuging, and the dynamics 
of the roller in figure 3 are closer to case (B) of this paper in which the heavy fluid 
is on the inside cylinder with a corrugated interface separating the two liquids. 
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FIGURE 3. (a) Front view of a completely submerged roller rotating at about 
1.5 r.p.m. (b )  Side view of the submerged roller of (a). 
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